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Abstract: In the literature, it has been suggested that for a class of anisotropic constitutive laws for fiber-
reinforced materials, the volumetric-deviatoric split should only be performed on the isotropic (matrix) 
term, but not on the anisotropic (fiber) term. In this research note, we follow up on the theoretical and 
numerical analyses adopted in these early publications with an intuitive example that allows us to directly 
analyze the effect of this split. We demonstrate that performing such split on the anisotropic term leads to 
non-physical volume growth of the material sample. Therefore, we consolidate the observation that the 
volumetric-deviatoric split should not be applied to the anisotropic (fiber) term of the total strain energy. 
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1. Introduction 

Biological tissues, such as ligament, skin and 

arterial wall, are often categorized as fiber-

reinforced materials and can be modeled with two 

components, the non-collagenous matrix and the 

collagen fibers [1-6]. The fibers are usually much 

stiffer than the surrounding matrix, making the 

material anisotropic with the preferred direction 

following the mean orientation of the distributed 

collagen fibers. Among different types of 

constitutive formulations for fiber-reinforced 

materials, a common choice is to adopt an 

isotropic (matrix) strain energy function enhanced 

with an anisotropic (fiber) term. In the anisotropic 

term, the material anisotropy is represented via a 

structural tensor [7]. 

It is common to decouple the isotropic strain 

energy of fiber-reinforced materials into the 

volumetric and deviatoric contributions. When 

Poisson's ratio is close to 0.5, the volumetric term 

containing the bulk modulus K serves as a penalty 

to ensure that the material satisfies the nearly 

incompressibility [7, 8]. However, the volumetric-

deviatoric split on the anisotropic strain energy is 

inconsistently used in the literature. For example, 

in some cases the full pseudo-invariant I4 is 

adopted in the anisotropic term [3, 9-11], while in 

other cases only its deviatoric part   ̅ is used [1, 4, 

12, 13]. Sansour [14] argued that the volumetric-

deviatoric split should not be performed on the 

anisotropic (fiber) part, otherwise the assumption 

that the change of material volume only depends 
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on a spherical state of stress would be violated. 

Helfenstein et al. [15] reached a similar conclusion 

by numerically demonstrating that nearly 

incompressible materials would undergo non-

physical volume growth if the anisotropic term 

depends only on the deviatoric deformation. We 

follow up on the theoretical and numerical analyses 

adopted in these early publications with an 

intuitive example that allows us to directly analyze 

the effect of this split. Using both analytical 

solutions and computational results, we consolidate 

the observation that the volumetric-deviatoric split 

should not be applied to the anisotropic (fiber) 

term of the total strain energy.

2. Constitutive modeling  

A common approach to model fiber-

reinforced materials is to smear the fiber 

component in the surrounding matrix and treat the 

material as homogeneous. The total strain energy 

function is decoupled into two terms 
      

   
  

     
  (1) 

where the isotropic term    
   

 and the anisotropic 

term  
     

 represent the contributions from the 

matrix and the fiber component. In  
     

, the 

structural tensor           is included to 
capture the material anisotropy, where N is a unit 
directional vector representing the fiber 
orientation. In order to guarantee the frame-

indifference of the constitutive model,  
     

 is 

written as a function containing a pseudo-invariant 
of the structural tensor A, for example, the full 
invariant [3, 9-11] 
             (2) 

or its deviatoric part [1, 4, 12, 13] 
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where C = FTF is the right Cauchy-Green tensor, 
and J = detF is the determinant of the deformation 
gradient F. The isotropic matrix is described by the 
modiffed neo-Hookean model, 
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 is the bulk modulus, G = 
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the shear modulus, E is Young's modulus,   is 

Poisson's ratio, and   ̅   
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         is the modified 
tensor invariant. In order to directly compare the 

influence of using I4 or   ̅ in the anisotropic strain 

energy  
     

  the exponential form proposed by 

Holzapfel et al. [1] is adopted in this research. 

2.1. Anisotropic term using I4 

When the full pseudo-invariant of the 

structural tensor I4 is used, the anisotropic strain 

energy of the Holzapfel-Gasser-Ogden (HGO) 

model is written as 
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where k1 is a stress-like material parameter, and k2 

is a dimensionless parameter. The 2nd Piola-

Kirchhoff stress is derived from Equation (5) as 
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The corresponding Cauchy stress is 
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where      is the fiber orientation in the 
deformed configuration. Equation (7) shows that 

using I4 in the anisotropic strain energy  
     

leads 

to a stress state aligned with the deformed fiber 
orientation. 

2.2. Anisotropic term using   ̅ 

When the deviatoric part of the pseudo 

invariant of the structural tensor   ̅ is used, the 

anisotropic strain energy of the HGO model is 

written as 
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The 2nd Piola-Kirchhoff stress in the reference 
configuration can be derived from Equation (8) as 
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The corresponding Cauchy stress in the deformed 

configuration is 
       

( )
            

( )
    

    (  ̅- ) 
     ̅-  

 

  -    
-
 

    -
 

 
  ̅  . 

(10) 

Equation (10) shows that using   ̅  in the 

anisotropic term  
     

 generates stress 

components that are no longer restricted to the 
deformed fiber orientation. 
 

3. Comparison of the I4 and   ̅ based models 

A 3D material sample is constructed with one 

single fiber embedded in the center of the matrix. 

The sample has the dimensions of 20 × 2 × 2 mm 

and undergoes uniaxial tension (Figure 1). The 

constraints in the 2-direction and 3-direction are 

chosen to ensure a homogeneous displacement 

field. Let λ1, λ2, and λ3 represent the three principal 

stretch ratios. Because λ2 = λ3, the deformation 

gradient is written as 
 

  (
λ   

 λ  

  λ 

). (11) 

In the material sample, the orientation of the 
embedded fiber coincides with the 1-direction. The 
unit directional vector N = (1, 0, 0) is used. The 
full pseudo-invariant and its deviatoric part are 

   λ 
  and   ̅ λ 

 

 λ
 

- 
 

 . 

First, the analytic solutions are acquired via 
the stress-free boundary conditions in the 
transverse directions of the sample, and the 
influence of the material parameters on the model 
behavior are quantified. Then, the numerical 

results based on using I4 and   ̅ in the anisotropic 
term are compared with a reference solution 
obtained from the embedded fiber approach. 

 

Figure 1. Material sample with one single fiber undergoing uniaxial tension. 

3.1. Analytic solutions

Using the deformation gradient F shown in 

Equation (11), the isotropic strain energy 

function is expressed by λ1 and λ2 as follows, 
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The anisotropic strain energy using I4 is 
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and the anisotropic strain energy using   ̅ is 
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For any fixed λ 
 , the corresponding    can 

be obtained via the stress-free boundary 

condition          . Expressing the Cauchy 

stresses of the HGO model using I4 and   ̅ in 

terms of the principal stretches λ1 and λ2, the 

stress components in the 2 and 3-directions can 

be written as 
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Figure 2. Influence of the material parameters on the total strain energy  (λ1, λ2) using I4; the curves 

represent the change of λ2 according to λ1. 

 
Figure 3. Influence of the material parameters on the total strain energy  (λ1, λ2) using   ̅; the curves 

represent the change of λ2 according to λ1.

In the above relationship,  
     

(λ 
  λ ) 

takes the form of Equation (5) or (8), depending 

on whether the volumetric-deviatoric split is 

performed on the anisotropic term or not. By 

means of solving Equation (15) via Newton-

Raphson iterations, the value of    
corresponding to each fixed   

  can be acquired. 

Recall that E represents the Young's 

modulus of the matrix, and k1 is the stress-like 

parameter for the fiber. The ratio between k1 

and E captures the level of the reinforcing effect 

introduced by the fiber. The dimensionless 

parameter k2 of the fiber influences the 

nonlinearity of the stress-strain relationship. 

Figures 2 and 3 show the influence of the 
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material parameters k1/E and k2 on the surfaces 

of the total strain energy  (λ1, λ2) using I4 and   ̅ 
in the anisotropic term. The curves in these two 

figures represent the change of λ2 according to 

λ1. 

Figures 4 and 5 show the projections of the 

λ2(λ1) curves on the λ2-λ1 plane. When I4 is used 

in the anisotropic strain energy, λ2(λ1) is 

independent of k1/E and k2, as shown in Figure 

4a. Also, the material near incompressibility is 

satisfied, as shown in Figure 4b. On the other 

hand, when    ̅̅̅is used in the anisotropic strain 

energy, λ2(λ1) varies significantly according to 

k1/E and k2. As shown in Figure 5a, when the 

nonlinearity is strong (large k2), the stretch ratio 

λ2 firstly decreases then increases as λ1 increases, 

indicating the expansion of the sample cross-

section after initial shrinking. This phenomenon 

happens because the nearly incompressible 

condition is violated, especially when the 

reinforcing effect of the fiber or the nonlinearity 

is strong (large k1/E or k2), leading to the 

unrealistic increase of the material volume, see 

Figure 5b. 

 
Figure 4. Influence of the material parameters on the λ2(λ1) curve and Jacobian J = detF when I4 is 

used in the anisotropic strain energy. 

 
Figure 5. Influence of the material parameters on the λ2(λ1) curve and Jacobian J = detF when    ̅̅̅is 

used in the anisotropic strain energy. 

3.2. Comparison with the reference solution 

The effects of using I4 or   ̅ in the 

anisotropic strain energy are further investigated 

by comparing the results from the I4 and   ̅ 

based HGO models with the reference solution, 

which is obtained from a FE simulation using 

the embedded fiber approach. The material 

sample under the same boundary conditions as 

shown in Figure 1 is used. The ground matrix is 

described by the modified neo-Hookean law 

with Young's modulus E = 1.0 × 10-3 MPa and 
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Poisson's ratio   = 0.499. The mechanical 

behavior of the embedded fiber is described by 

an exponential strain energy function 
 

 
 
(λ) 

 

  
   

 [   λ   
 

  ]   (16) 

where the axial stiffness k = 0.013 MPa and the 

dimensionless parameter b = 0.7. The numerical 

result obtained from the embedded fiber 

approach is used as the reference solution, 

which is compared with the results from the 

HGO model using I4 and   ̅ in the anisotropic 

term respectively. 

Both the HGO model and the embedded 

fiber approach use the same material parameters 

E and   for the isotropic matrix term. The 

material parameters (k1, k2) for the anisotropic 

term in the HGO model are calibrated 

according to the force-stretch relationship fref 

 λ1) of the reference solution. For the I4 based 

HGO model, the optimal values of (k1, k2) are 

obtained as follows, 

(     )       
            

‖   (      λ )  
    λ  ‖   (17) 

The optimal values of (k1, k2) for the   ̅  

based HGO model can be acquired via a similar 

approach. Figures 6 and 7 show the calibrations 

of (k1, k2) for the I4 and   ̅  based HGO models. 

Table 1 shows the material parameters used in 

different modeling approaches. 

Table 1. Material parameters used for different modeling approaches. 

 E (MPa)   k (MPa) k1 (MPa) k2 b N 

Embedded fiber approach 1.0 × 10-3 0.499 0.013 - - 0.7 - 

Anisotropic term using I4 1.0 × 10-3 0.499 - 0.039 0.010 - (1,0,0) 

Anisotropic term using   ̅ 1.0 × 10-3 0.499 - 0.055 0.575 - (1,0,0) 

 
Figure 6. Calibration of k1 and k2 for the anisotropic term using I4; minimum error is achieved at 

(0.039,0.01). 

 
Figure 7. Calibration of k1 and k2 for the anisotropic term using   ̅; minimum error is achieved at 

(0.055,0.575).
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The force-stretch curves obtained from the 

I4 and   ̅ based HGO models both match the 

reference solution, as shown in Figure 8. Figure 

9a shows that when I4 is used in the anisotropic 

term, the transverse stretch ratio λ2 

monotonically decreases as λ1 increases, and 

the λ1(λ2) curve matches the counterpart of the 

reference solution. However, when   ̅ is used 

in the anisotropic term, the transverse stretch 

ratio λ2 first decreases then increases, 

indicating a contraction followed by later 

expansion of the cross-section. This non-

physical growth of material volume when   ̅  

is used in the anisotropic strain energy 

violates the material nearly incompressible 

condition, as shown in Figure 9b. 

 
Figure 8. Comparison of the force-stretch curves using I4 and   ̅ in the anisotropic term with the 

reference solution. 

 
Figure 9. Comparison of the λ1(λ2) curves and Jacobian J = detF using I4 and   ̅ in the anisotropic 

term with the reference solution. 

4. Conclusions 

In this research, we combine theoretical 

analysis and numerical results to straightforwardly 

demonstrate that the volumetric-deviatoric split 

should not be performed on the anisotropic (fiber) 

strain energy for fiber-reinforced materials. 

Specifically, we construct an intuitive example and 

analyze the influence of I4 and   ̅ on the HGO 

model behavior. We show that when I4 is adopted 

in the anisotropic strain energy, the transverse 

stretch ratio of the sample monotonically 

decreases. This is because the material near 

incompressibility is well preserved during the 

deformation. Since the fiber does not contribute to 

the transverse stresses, the transverse deformation 

only depends on the isotropic (matrix) strain 

energy. This phenomenon fits with the underlying 

assumption that fibers act as one-dimensional 

components and reinforce the material only along 

the fiber orientations. On the other hand, when   ̅ 

is used in the anisotropic strain energy, the 
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transverse stretch ratio λ2 first decreases then 

increases, indicating a contraction followed by later 
expansion of the cross-section. The dependence of 
the sample transverse deformation on the 
anisotropic strain energy can be explained by the 

expression of the Cauchy stress. When   ̅ is used, 
the fiber counter-intuitively acts as a multi-
dimensional component and contributes to the 
transverse stresses. We further compare the 

numerical results from the I4 and   ̅ based HGO 
models with the reference solution, which is 
obtained via the embedded fiber approach. 
Although the force-stretch relationships both 
match the reference solution, only the HGO 

model using I4 in the anisotropic term also 
matches the transverse deformation of the 

reference solution. The HGO model using   ̅ 
exhibits non-physical volume growth and violates 
the material nearly incompressibility condition. 
Based on the analytical and numerical results 
presented in this research, we consolidate the 
conclusion that in the numerical simulation of 
fiber-reinforced nearly incompressible materials, 
the volumetric-deviatoric split should not be 
performed on the anisotropic strain energy and the 
full pseudo-invariant I4 of the structural tensor 
should be used. 
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